cosx⼀<2sinx+3cosx>的不定积分

2025-06-21 04:05:59
推荐回答(2个)
回答1:

你好!

令t= tanx
则 dx = d(arctant) = 1/(1+t²) dt

原式= ∫ 1/(2tanx +3) dx
= ∫ 1/(2t +3 ) * 1/(1+t²) dt

1/[(2t +3 )(1+t²)] = A/(2t+3) + (Bt+C) / (1+t²)
= [(A+2B)t² +(3B+2C)t +(A+3C)] / [(2t+3)(1+t²)]
∴A+2B=0,3B+2C=0,A+3C=1
解得 A= 4/13,B= - 2/13,C= 3/13

∴原式 = ∫ [ (4/26)/( t+ 3/2) - (1/13)*2t/(1+t²) + (3/13) /(1+t²) ] dt
= 4/26 ln (t+ 3/2) - 1/13 ln(1+t²) + 3/13 arctant +C
= 4/26 ln( tanx + 3/2 ) - 2/13 ln |secx| + 3/13 x +C

回答2:

换元 t=tanx